Skip to contents

All functions

apply_movement()
Simple movement to population dynamics
between()
Check if elements in x are between corresponding elements in lb and ub
between_scalar()
Check if elements in x are between corresponding elements in lb and ub
check_between()
Check if x is between lb and ub
default_priors()
Default priors' hyperparameters
default_toggles()
Default toggles
drmr-package drmr
drmr: Dynamic Range Models in Stan
dtn()
Density of a truncated Normal distribution
dtt()
Density of a truncated Student's t distribution
fit_drm()
Fit the dynamic range model.
fit_sdm()
Fit a GLM based SDM
fitted_pars_drm()
Retrieve parameters needed for forecasting
fitted_pars_lambda()
Retrieve parameters needed for forecasting
fitted_pars_sdm()
Retrieve parameters needed for forecasting
fix_linbeta()
Regression coefficient for non-centered variable
fix_re()
Random effects verbose to code
gen_adj()
Generates an adjacency matrix
get_fitted_pars()
Retrieve parameters needed for forecasting
get_nodes()
Get nodes for ICAR spatial random effects
get_phi_hat()
Estimate phi
get_scaling()
Scaling factor for ICAR
ginv()
Generalized Inverse
int_score()
Calculate the interval score
lambda2df()
Turn an array of density per age, time, and patch/site into a data.frame
lambda_drm()
Age-specific densities based on DRM.
make_data()
Make data for DRM stan models
make_data_sdm()
Make data for SDM stan models
make_surv()
Generate the "survival" terms
marg_rec() marg_pabs() marg_surv()
Relationships with covariates
max_quad_x()
Value of a covariate that maximizes the response variable in a quadratic model.
model_sim()
Generate a random sample from a model's predictive distribution given a set of parameters
pars_transform()
Transform parameters to a meaningful and interpretable scale.
pop_dyn()
Simulate population dynamics
pp_sim()
Generate samples from the prior predictive distribution of model parameters
predict_drm()
Forecasts based on DRM.
predict_sdm()
Forecasts based on SDM.
prior_inits()
Generate initial values for MCMC from the prior
prior_sample()
Generate samples from the prior distribution of model parameters
rtn()
Random number generation from a truncated Normal distribution
rtt()
Random number generation from a truncated Student's t distribution
safe_modify()
Modifying a named list
sim_ar()
Simulate AR(1)
sim_dens()
Simulate response variable
sim_log_rec()
Simulate log-recruitment
sum_fl
Summer Flounder