Skip to contents

The fit_drm function is designed to be flexible, allowing different model features to be enabled or disabled through a set of toggles. This vignette provides a comprehensive guide to the parameters used in the DRM, their meaning, the priors they are assigned, and the specific toggles required to activate them.

DRM model parameters and priors

The table below details each parameter in the DRM. The “Toggle” column indicates the condition needed to include a parameter in the model. If a parameter is not activated by its toggle, it is excluded from the model, and its prior is not used.

Parameter Code Meaning Toggle Priors Default hyperparameters
βt\beta_t beta_t Reg. coef. for proba. of absence N/A N(mt,st)\mathrm{N}(m_t, s_t) mt=0,st=1m_t = 0, s_t = 1
βr\beta_r beta_r Reg. coef. for recruitment N/A N(mt,st)\mathrm{N}(m_t, s_t) mr=0,sr=1m_r = 0, s_r = 1
ϕ\phi phi Dispersion parameter N/A Gamma(ap,bp)\mathrm{Gamma}(a_p, b_p) ap=2,bp=1a_p = 2, b_p = 1
βs\beta_s beta_s Reg. coef. for survival est_surv N(ms,ss)\mathrm{N}(m_s, s_s) ms=0,ss=1m_s = 0, s_s = 1
ξ\xi xi $() = + () rho_mu LN(mlxi,slxi)- \mathrm{LN}(m_{lxi}, s_{lxi}) mlxi=0,slxi=1m_{lxi} = 0, s_{lxi} = 1
ζ\zeta zeta Prob. of remaining in the same patch movement Beta(az,bz)\mathrm{Beta}(a_z, b_z) az=.5,bz=.5a_z = .5, b_z = .5
α\alpha alpha AR(1) temporal correlation ar_re \neq"none" Beta(aa,ba)\mathrm{Beta}(a_a, b_a) aa=.5,ba=.5a_a = .5, b_a = .5
$_t sigma_t AR(1) conditional SD ar_re \neq"none" LN(mlst,slst)\mathrm{LN}(m_{lst}, s_{lst}) mlst=2,slst=.25m_{lst} = -2, s_{lst} = .25
$z_t z_t AR(1) random effects ar_re \neq"none" ztAR(1)z_t \sim AR(1) N/A
$_i sigma_i Patch level iid random effect SD iid_re \neq"none" LN(mlsi,slsi)\mathrm{LN}(m_{lsi}, s_{lsi}) mlsi=2,slsi=.25m_{lsi} = -2, s_{lsi} = .25
$z_i z_i Patch level iid random effects iid_re \neq"none" ziN(0,σi2)z_i \sim \mathrm{N}(0, \sigma^2_i) N/A
$_s sigma_s Patch level ICAR random effect SD sp_re \neq"none" LN(mlss,slss)\mathrm{LN}(m_{lss}, s_{lss}) mlss=2,slss=.25m_{lss} = -2, s_{lss} = .25
$z_s z_s Patch level ICAR random effects sp_re \neq"none" zsN(0,σi2)z_s \sim \mathrm{N}(0, \sigma^2_i) N/A

SDM

TBD

References