Extraction plan for APCL18_377-APCL18_470 $_{2018-07-11}$

This is a script for adding samples that are not in the laboratory database and have not been extracted. This is set up to handle one plate at a time.

Obtain a list of all clownfish sample ids from the Leyte database

```
# connect to leyte fieldwork db
leyte <- read_db("Leyte")
# import fish table
# select down to only sample_id numbers and remove any rows without a sample
fish <- leyte %>% tbl("clownfish") %>%
# select only the column sample_id
select(sample_id) %>%
# remove any non-sample observations
filter(!is.na(sample_id)) %>%
distinct(sample_id) %>%
# remove any repeat sample_ids (this should not be needed)
collect()
# make sure each sample_id is only represented once
fish <- distinct(fish)</pre>
```

Select the range of samples in the plate

```
work <- fish %>%
filter(sample_id >= params$first, sample_id <= params$last)
# define wells
plate <- data.frame(row = rep(LETTERS[1:8], 12), col = unlist(lapply(1:12, rep, 8))) %>%
mutate(sample_id = ifelse(row == "D" & col == 2, "XXXX", NA),
    sample_id = ifelse(row == "E" & col == 8, "XXXX", sample_id))
samples <- plate %>%
filter(is.na(sample_id)) %>%
select(-sample_id)
plate <- anti_join(plate, samples, by = c("row", "col"))
samples <- cbind(samples, work)
plate <- rbind(plate, samples) %>%
arrange(col, row)
```

Make a plate map of sample IDs (for knowing where to place fin clips)

```
platemap <- as.matrix(reshape2::acast(plate, plate[,1] ~ plate[,2]), value.var = plate[,3])
knitr::kable(platemap, booktabs = T) %>%
    # use scale_down to get map to fit within the bounds of the pdf
kable_styling(latex_options = "scale_down")
```

	1	2	3	4	5	6	7	8	9	10	11	12
Α	APCL18_377	APCL18_385	APCL18_392	$APCL18_400$	$APCL18_408$	APCL18_416	$APCL18_424$	$APCL18_432$	$APCL18_{439}$	$APCL18_447$	$APCL18_455$	$APCL18_463$
B	APCL18_378 APCL18_379	APCL18_386 APCL18_387	APCL18_393 APCL18_394	APCL18_401 APCL18_402	APCL18_409 APCL18_410	APCL18_417 APCL18_418	APCL18_425 APCL18_426	APCL18_433 APCL18_434	APCL18_440 APCL18_441	APCL18_448 APCL18_449	APCL18_456 APCL18_457	APCL18_464 APCL18_465
D	APCL18_380	XXXX	APCL18_395	APCL18_403	APCL18_411	APCL18_419	APCL18_427	APCL18_435	APCL18_442	APCL18_450	APCL18_458	APCL18_466
Е	APCL18_381	APCL18_388	APCL18_396	$\mathrm{APCL18}_404$	$APCL18_{412}$	$APCL18_{420}$	$APCL18_{428}$	XXXX	$APCL18_{443}$	$APCL18_451$	$APCL18_{459}$	$APCL18_{467}$
F	APCL18_382	APCL18_389	APCL18_397	APCL18_405	APCL18_413	APCL18_421	APCL18_429	APCL18_436	APCL18_444	APCL18_452	APCL18_460	APCL18_468
G H	APCL18_383 APCL18_384	APCL18_390 APCL18_391	APCL18_398 APCL18_399	APCL18_406 APCL18_407	APCL18_414 APCL18_415	APCL18_422 APCL18_423	APCL18_430 APCL18_431	APCL18_437 APCL18_438	APCL18_445 APCL18_446	APCL18_453 APCL18_454	APCL18_461 APCL18_462	APCL18_469 APCL18_470

ONLY DO THIS ONCE

Generate extract numbers for database

```
lab <- read_db("Laboratory")
extracted <- lab %>% tbl("extraction") %>%
summarise(last = max(extraction_id, na.rm = T)) %>%
collect() %>%
mutate(last = substr(last, 2,5))

plate <- plate %>%
mutate(well = 1:nrow(plate)) %>%
mutate(extraction_id = paste("E", well + as.numeric(extracted$last), sep = "")) %>%
mutate(well = paste(row, col, sep = "")) %>%
mutate(method = "DNeasy96",
final_vol = "200")

plate_name <- plate %>%
summarise(first = min(extraction_id),
```

Make a platemap with extraction ids

last = max(extraction_id, na.rm = T))

```
map <- plate %>%
select(row, col, extraction_id)
platemap <- as.matrix(reshape2::acast(map, map[,1] ~ map[,2]), value.var = map[,3])</pre>
```

Using extraction_id as value column: use value.var to override.

```
knitr::kable(platemap, booktabs = T) %>%
kable_styling()
```

	1	2	3	4	5	6	7	8	9	10	11	12
А	E4935	E4943	E4951	E4959	E4967	E4975	E4983	E4991	E4999	E5007	E5015	E5023
В	E4936	E4944	E4952	E4960	E4968	E4976	E4984	E4992	E5000	E5008	E5016	E5024
С	E4937	E4945	E4953	E4961	E4969	E4977	E4985	E4993	E5001	E5009	E5017	E5025
D	E4938	E4946	E4954	E4962	E4970	E4978	E4986	E4994	E5002	E5010	E5018	E5026
Ε	E4939	E4947	E4955	E4963	E4971	E4979	E4987	E4995	E5003	E5011	E5019	E5027
\mathbf{F}	E4940	E4948	E4956	E4964	E4972	E4980	E4988	E4996	E5004	E5012	E5020	E5028
G	E4941	E4949	E4957	E4965	E4973	E4981	E4989	E4997	E5005	E5013	E5021	E5029
Η	E4942	E4950	E4958	E4966	E4974	E4982	E4990	E4998	E5006	E5014	E5022	E5030

```
plate <- plate %>%
  mutate(plate = paste(plate_name$first, plate_name$last, sep = "-")) %>%
  select(-row, -col)
```

Import the extract list into the database

Make sure you have created your output PDF for this laborate before sending to the database

```
rm(lab)
lab <- write_db("Laboratory")
## Loading required package: DBI
dbWriteTable(lab, "extraction", plate, row.names = F, overwrite = F, append = T)
## [1] TRUE
dbDisconnect(lab)
## [1] TRUE
rm(lab)</pre>
```

Load fin clips

Calculate the amount of lysis buffer to make

```
num_samples <- params$num_samples
w_error <- num_samples *1.1
mix <- readr::read_csv("num_samples_w_error, ul_prot_k, ml_ATL_buff
0,0,0") %>%
mutate(num_samples_w_error = w_error,
ul_prot_k = w_error * 20 * 0.001,
ml_ATL_buff = w_error * 180 * 0.001)
```

kable(mix)

$num_samples_w_error$	ul_prot_k	ml_ATL_buff
105.6	2.112	19.008

- 1. Set up tubes of fin clips into the plate formation on tube holder block according to plate map.
- 2. Create the lysis mix in a 50mL falcon tube, do not vortex (foamy), and pour into 50mL reservoir.
- 3. Place an 8 well strip of collection tubes (H position labeled with the column number) onto the loading plate and fill with 200uL of lysis mix.
- 4. Double check that the next column of tubes matches the plate map
- 5. Place the fins in the collection tubes
- 6. Cap the tubes
- 7. When the entire plate is done, place in the incubator overnight.
- 8. Allow the plate to cool and check the caps to make sure they are on securely.
- 9. Follow the Qiagen protocol for plate extraction.

Next follow the protocol for gel and pico_plate to check quality and quantity of extracts